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Abstract A new method of modelling seasonal time series . a cross-section method, is proposed.
Compared with conventional methods of analysing scasonal time series, the cross-section method is
effective and easy to understand, Basically, seasonality is removed by cross-sectioning the time series, ie.
by modelling a cross-section of data at each season of the time series lo obtain a distinet fitted model Tor
each season of the year. The method is illustrated on a simulated time series and on two practical time

series, one of which is well-known in the literature.
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forecasting

i Entroduction

Many modelling methods are available for the
analysis of scasonal time series. For example,
decomposition isolates estimates of the seasonal,
trend and cyclical components of the lime
series, projects these components into the future,
and synthesises the projections into forecasts of
future values of the time series in accordance
with some assumed model { eg., additive,
muitiplicative, mixed). Smoothing methods,
such as Winter's three-parametcr model, obtain
seasonally adjusted forecasts which in the final
step are re-seasonalised to yield the forecas!. In
Box-Jenkins [ 1976] ARIMA modelling,
seasonal differencing may be employed to ebtain
a transformed time series which is stationary in
its seasonal component. Then analysis of the
correlations at the seasonal lags enables the
appropriate seasonal component of the model to
be identified and fitted in the usual way.

Many time serics met with in practice (
especially economic time series) contain
seasonai effects inciuding increasing seasonal
variation. Bowerman et al [1990] discuss the
approaches to modelling and forecasting these
kinds of series. They describe four type of
maodels:

data Transformation: This is the traditional
approach used in ARIMA modelling, and

includes seasonal differencing and the usual
logarithmic or power transformations,

Doubte Seasonal Difference Model: For an
ARIMA made! requiring secand order seasonal
differences at the identification stage, two lerms
are required in the fitted equation to obtain the
forecast of scason j that is r years beyond time
origin t.

Seasonal Intervention Model: This model is a
maodification of multipie regression which uses
seasonal differences and dummy variables as
shown in the equation below 1o model the time
series as partly deterministic and partly
stochastic.

(I=B)Y =J, "%Zﬁfdp Te,
i

where, B is backward operator, B”,B ; are
unknown parameters, s is length of seasonality |
d,, is dummy variables which is | when
observation ¥, is in season j and zero otherwise

for 5-1 out of s seasons. The stochastic
components { €, } follow an ARIMA model of

the form

(i- By 9(BYO(B e, = (BYO(B )a,.
where @,'s are independently and identically
distributed with mean zero and fixed variance,
e, a, ~ iid(D,67).



Seasonal Interaction Model: In place of the
seasonal differencing of the seasonal
intervention model. this model includes
delerministic and seasonal trend estimates as
shown,

Vo= Bt o B, Bid e,
i J
where ¢, and o s defined hefore, and

B(,,ﬁﬂk ,ﬁj,B; are unknown parameters. {also

see Bowerman et al [1990])

2 Option Sefection Principles

When [aced with the choice of selecting which
madel 1o use for a particular time series. the
following principles are suggested as a guide |
Bowerman et al 19907,

= "The use of a data ransformation implics
that the lime series does not exhibit inear
increasing seasonal variation in the original
metric.” The question of whather linear
increasing seasonal variation exists in the
original series is often difTicult 1o answer.

s In {ollowing the usual identification process
for ARIMA modelling, significant
autocorrelations would be observed slowly
dving down through seasonal lags 1s, 2s,
35, ... if the scoond seasonal difference 15 0
be justilied as part of a model. In fact. for
many time series reguiring double seasonal
differencing, this does not oceur. For
exampie, Wichern 119731 cxamines a non-
stationary, non-seasenal time series
(1= 8)Y =(1-88)a, and shows that as
8 —> 1, the sample autocorrelations
approach zero at all lags, For a seasonal
model (1 — B _}:V; ={1— BR,BV Y,
Wichern's discussion could be applied to
argue that as 8 — I, the sample
autocorrelations approach zero at the
seasonal lags 1s. 25, 3s, ... even though the
series is non-stationary in its seasonality.

e Seasonal Intervention Model: The seasonal
intervention model may be appropriate, as
an alternative to the usual ARIMA, when
the latter's identification stage fails to
identify a double seasonal difference model
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while the plot of the time series shows
increasing seasonal variation.

e When, in fitting a seasonal intervention
model, a unit root is found in a seasonal
moving average operator in the ARIMA
model for the €., a seasonal interaction
model could be tried. Compared with other
double seasonal differencing related models,
interaction mode! has the most
deterministic features.

In general, nenlinear increasing seasonal
variation is more appropriately modelled using
the transformed data model, ie an ARIMA
model of the transformed time serics. When the
seasonal variation is increasing lincarly. the
seasonal intervention modet could be more
appropriate. Sometimes, however, it is uncertain
which modet is best.

Many time series displaying increasing seasonal
variation have a strong deterministic
component. This is associated with the failure of
correlation function analysis to identify true
double seasonal difference models, and in the
estimation stage with finding unit roots in
moving-average part of the model.

3 Cross-Section Modelling Method

Suppose a seasonal lime series with increasing
variation is § K Vi=1.2...n. and the seasonality
iength is s, Obviously, for quarterly data, s=4:
for monthly data, s=12,

All the models introduced above (ry to fita
unique model o the given time series with
increasing seasonal variation. We note that the
seasonal impacts could be analysed more
accurately if we concentrate on the analysis of
the sub-time series | S, } . 1=1.2...s consisting

- 1]
of all the {" season data only.
Further, we assume n=K*s + N, 0 <N <s-1.

Then we can re-write original time series as
fellows.
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Suppose, we cut HMe Series Cross $easons
verticaily and get s sub-time series . { SY, },
t=1.2. K41 lori=1.2, N =1.2,...K for
=N N2, s

The most important feature of these sub-time
series is that each of them consists of data from
the same season. It is reasonable to expect that |
SY, V=128, t=1,2. K+ fori=1.2,. N;
=12, K fori=N+1, N+2_...8 reflects the most
important characteristics for the 77 season. For
different seasons, different models are to be built
to catch up these characteristics,

Our forecasting procedure is:
e Divide originai time series ¥, across the

different scasons, getting s different sub-

time series, [ ST}, [ SY,, ]..... [SY )

= Forssub-timeseries | 8, ), i=1.2...s. fit
different models, M, , M, LML

e Use the s fitted models to obtain different
seasonal forecasts,

4 Examples

4.1 Example One

In arder to show the effectiveness of cross-
section method, we consider function

= exp‘{i"" cost, i >0 {1

Clearly, ¥, isa cyclical function with varying
ampiitudes and period 270, For simplicity, we
consider only 4 points in each period over 10
periods, like a series of ten years of quarterly
data.
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Period i T 127 1771

S 10 10 io

1 08141 -0.6009 -0.8401 0n.62
2 (.866Y (16398 -(1.8946 0.6602
3 3.9231 6813 -1.8526 (17031
2 0.983 Y7255 -10144 (1.7486
s P046T 07723 410801 QUeT
6 LIL46 -0.8226 10502 0.8489
7 11869 (1876 -1.2248 (.5039
8 1,263y -{1.9328 - 302 (19626
9 P.3458 ) BY33 -1.3888 1.025
H} 1 4331 -1.6377 -1 4788 1.0914

We have four sub-time series (ST, 1.i=1.2,3.4;
t=1,2,.,10. Although original time scries varies
significantly, one common feature of cach sub-
time serics is that it is either monotone
tncreasing or decreasing. In other words, we can
use four simple models to fit each sub-time
series individually rather than {inding a
complicated model to £it the entire time series.

i this case, the model ST, =1.064855Y]
d=1.2.3,4, has been fitted. It perfectly fits all of

the sub time series. R° =100 %

When we consider fitting a unique model 1o the
entire lime series, as in the conventional time
series analysis modelling process. it is difficult
lo envisage using a nonlinear model (1) w fit
historical data. But, by scparating the different
seasons of data and fitting a simple modef for
each season, we are able to incorporate alf the
seasonal characteristics of the original tme
series and obtain a prefect fit and forecast in this
deterministic example.

4.2 Example Two

The feasibility of cross-section modeiling has
been seen in the above example. Due to the
specificity of that example, we now analyse a
well-known practicai time series here to
iluminate the effecliveness of cross-section
madelting with real data,

4.2.1 Data

The data are monthly tolals of international
airtine passengers (in thousands) from January



194Y 1o December 1960 | Box and Jenkins
1976]. This time series comprises 144
observations. H is obvious that the series is
seasonal with increasing seasonal variation | see
Figure 1} Box and JTenkins [1976] use a
seasonal model of the form
£2

ARIMALOL ML LD

2 12
G-l - B I, = (- 0BIL - 88 e
to fit the logged airline data, where €, ~ idd

N, &), They obtain §=0.4. ©=06, and G
=1.34 %107 Butas indicaled by Chatfield and
Prothero [1973], it doesn't follow that the modet
which fits the transformed data best will also fit
the original data the best. We will compare Box-
Jenkins model performance with cross-section
model later,

—
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Figure |1 Internationad Adrdine Passengers tin thousands)

4.2.2 Cross-Section Modeling

Since this series is made up of monthly data, we
construct s=12 models 1o it individual seasons
of data. Twelve sub time series, | SY, e

RS (S PO [5Y 1 have heen oblained for Jan,
feb...... Dec data respectively. We consider that

in the season k at time . {57, Jis affected by

data from:

2 the previous two seasons of the previous
year, o S}/k--j Mzmd SYA_,, o
®  the same season of the previous year,

s OV
HCF SR

s the next two seasons of the previous year, ie
SY ., and §Y, s and

RE

»  the previous two seasons of the current
year,5Y, . . ST,

So the model takes the general form

N

SYMS.J»I‘

S}{L: =f( S};\'—E.r—l ’SY;-«}.I—& 15});"7] :
;SK'('—E.I‘-! . S};\—E.r‘S}}f;—Q.r 1

We use data from January 1949 to December
1959 (o estimate the models and retain the last
year's data for evaluation. Using stepwise
regression with the above-mentioned factors, we
obtain the titted models:

o January: SY,, =667+ 1036 §Y 5 RT =996 %
o February: v, ,=24.207 + 1.1475Y, , -0.277
i
SY 4, R =997 %
#  March: Y, ,=20024+1.048 5y, . R=99.3 %
. z )
s ApribSY, =6806+0997 8Y, (R =098 %
2
»  May: SY. =23.685 |.0BOSY {, R™ =998 %
o June: 8§V =0.033+ LIOBSY, 4058187, -

el
0.598 SY RT =098 %

ENES

2
o July:SY, =8398+1.150 8Y, . R =996%

X
o August: SY, =16660+1.081 8§Y,, | R =996 %

& Seplember: 5Y, =24031+0.7968Y,  R™ =997%

e October: SY,,, =10.403+0.549 §Y, +

1t
2

0.2538Y, , RT =998 %
e November: sy =226%+1.075 8Y,, -6.242

N
SY! fp]" R =99 6

3
s December: 8Y,,,=12.788+1.07 §Y,  R™ =99.9%

The forecasting resuits of the cross-section

method and those of Box-Jenkins ARIMA(O
el N -

13O 1}1' arc compared in Figure 2.

Obs Cro-Sec AE. pE ARIMA AE. PE.

417 42151 4.51 1.08% 41893 1.93 (.46%
3 397.99 £99 1.79% 399.81 g.a1 2.25%
a2 481,77 4277 1021% 46715 48.15 11.49%
461 453.58 742 1.61% 455.08 582 1.28%
472 47503 3.03 0.64% 472.1 oA 0.02%
535 536.4 1.4 0.26% 545.97 10.87 2.05%
822 B08.26 1374 221% 81811 2.89 0.47%
605 £09.05 a.0s 0.50% 825,51 19.51 322%
508 508.23 0.23 0.04%% 525.98 17.08 3.54%
451 44357 1748 379% 461.45 0.45 0.10%
330 3859 34 0.79% 405.61 15.61 4.0

432 427.16 4.84 1.12% 451.86 19.96 4.80%
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Figure 2 Comparisnn of Cross-Section Model and ARIMA
( A.E. denotes Absolute Error, P.E. denotes Percentage Emon)

From figure 2, it can be scen that cross-section
. : 12,
modelling is betler than ARIMA(O 1 B0 1 1) "in
term of MSE and MAPE. The residual analysis
shows no correlations among the residuals.

Cross- Section ARE MA
Lags ACF PACF ACE PACE
| D02 -0z 41163 <0163
2 -3.262 -0.278 £1.449 488
3 (102 -(1.097 G.166 EIRER
4 (.13 0.043 A id (488
5 Ari2d RIRE! 0.172 (HLo19
&} -(1.166 -E2 152 -0.149
7 0.24 015 -1.3213 £).261
& S0.H13 -0.193 0023 -.221
9 000 S007 3 (0.191 0139
H) (3.023 -0.042 -1.03 0418

Figure 3:ACF and PACF of residuals

It seems that cross-section modelling method
fooks like more complicated than ARIMA
model, Bul in fact, it is not true. Most practical
forecasting users with basic statistical
knowledge can understand regression analysis
but maybe not familiar with Box-Jenking'
methodology. Cross-section method provides a
new modelling approach for practical users.

4.3 .Exampié Three

In order to further demonstrate the effectiveness
ol cross-section method, we consider a further
example which is contained in Bowerman and
O'Conneli [ 19931, The available historical data
consists of the number of monthly average
occupied rooms for the |5 vears from 1977 (o
1991 of four hotels in a cily. The data are
plotted in Figure 4.

Bowerman and O'Connell [1993] use an
ARIMA(S.0,00(0,1.1)'" model for the
transformed data 1’; = Y}MS. where Y, is raw
data. Using cross-section method, we can get [2
sub-lime series each consisting of the same
season's data, It is apparent that each sub-time
series has approximately linear relationship with
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time. This suggests that we try a simple lincar
regression using lime as the independent

i
. i i q
. ﬂ r/ ll&"\f'/ l‘!\‘fj \f \flf L\NJ L\Wj !

Figure 4: Monthly Average Occupied Rooms

We use the first 14 years' data to cstimale
parameters and the last year's data for evaluation
purposes, The fitted models are:

January: SY |, =484+21.3%1, R® =98.5 %

12660
February: SY, =455+19.8%, R” =97.4 %
(2L
March: SY, =484418.3%, R” =95.7 %
[13.58)
April: S, =561+19.0%, R® =97.9 %
12273
May: SY ., =536+21.0% R =98.4 %
2632
June: SY,,=605+24.7%, R” =99.2 %
3646
July: SY,,=680+31.3%, R” =98.0 %
{23,324
August: Y =690+33.3%1, R® =98.9 %
. 131.38)
September: SY,,,=555+23.0% R® =97.7 %
(2145
October: SY ,, =532+25.054 R =09.1 %
{3571
November: 8Y ,, =464+20.5%(, R? =98.2 %
(24.28)
December: SY = 513424.0% R” =99.4 %
(bdT

Mot The numbers in parentheses ane associated estimate spdacd errors

The [orecasting resulls are shown in Figare 5.

(bs Cro-Bec AE P.E. ARIMA AE PE.
8t1 782.5 285 35% 764.87 48.13 57%
732 731.91% 0,19 0.028% 73845 3.45 0.47%
745 73023 577 0.77% 745.7 0.7 0.084%

244 g26.88 17.82 2.09% RBES7 11.03 1.3%

833 828.81 3.9 0.30% 316.44 16.58 1.98%
435 851 6.0 17% 841.44 G.44 0.69%
1110 1118.19 B.19 0.74%  1084.33 t8.67 1.41%
1124 115627 3227 2.87% 112825 4.25 0.878%
868 ar7 a.n 1.04% a60.75 725 0.835%
860 #82.15 2215  2.58% 865.7 570 0.663%



762 7hTie 1081 1.42% 738.58 23.42 3.07%
437 B48 27 2873 3.28% 83092 46.08 5.25%
RESE AATE MSE MAPE
R i ELION PRI

Frgane 5 Comparisen o Cross-Sectios &odel amd ARIMA Muoded

The results show that there is no significant
difference between the forecasting accuracy of
simple Hnear regression models and that of
ARIMA model. The former one is much casier
to understand and explain compared with the
latter which is quite complicated for the
practical users.

Residual analysis results also show that no
significant correlations among the residuals,

It is pointless to use a complex mode] for
forgeasting such a data sel to get worse forecasts
while a series of simpler models can be used to
get better forecasts.

5 Summary and Conclusion

In this paper. we propose a cross-section methed
tor scasonal Line series with increasing
variation. Examples with both simuiated and
practical time sertes show that this methaod is
elfective. it is well-known that 2 unique "best
furecasting method” does not exist. The " best
method” is subject to many considerations such
as the nature of the time series, the criteria ysed
to evaluale the fi,

From our case studies the-forecasting errors
produced by the cross-section method are
smaller than those of the ARIMA made] and no
correlations exist among the residuals.

One of the most significant features of the cross-
section modeliing method is that it is very
straightforward and s much easier for the
practical users to understand and fo use. fn fact,
cross-section modelling is a modelling strategy
which could simplifies a single complex
modelling construction procedure 1o a several
stmple modelling constructions and achicves the

same, even belter, forecasts,

Another significant feature is that unlike most
forccasting models which use a unigue model
(eg seasonal ARIMA model) or same type
madels (eg scasonal intervention modet uses

different dummy variables 1o represent different
scasons) for all seasens, cross-section method
may have constructed totally different models
for different seasons to reflect the most
important seasonal effects.

Obviously, like any forecasting model. we can
not guarantee cross-section method always
outperforms than other models. Bul, what we
can say is that for some types of time series, as
serics discussed in this paper, cross-section is
easier and forecast accuracy s better in terms of
MSE and MAPE,

We conclude that among the many methods for
seascnal time series analysis, the cross-section
method could be considered as an allernative,
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